Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3244, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622111

RESUMEN

Proteins are molecular machines and to understand how they work, we need to understand how they move. New pump-probe time-resolved X-ray diffraction methods open up ways to initiate and observe protein motions with atomistic detail in crystals on biologically relevant timescales. However, practical limitations of these experiments demands parallel development of effective molecular dynamics approaches to accelerate progress and extract meaning. Here, we establish robust and accurate methods for simulating dynamics in protein crystals, a nontrivial process requiring careful attention to equilibration, environmental composition, and choice of force fields. With more than seven milliseconds of sampling of a single chain, we identify critical factors controlling agreement between simulation and experiments and show that simulated motions recapitulate ligand-induced conformational changes. This work enables a virtuous cycle between simulation and experiments for visualizing and understanding the basic functional motions of proteins.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/metabolismo , Difracción de Rayos X , Conformación Proteica
2.
RSC Adv ; 14(10): 6985-6986, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38440778

RESUMEN

Megan O'Mara, Sarah Rauscher and Stacey Wetmore introduce the RSC Advances themed collection on New insights into biomolecular systems from large-scale simulations.

3.
bioRxiv ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37461732

RESUMEN

Proteins are molecular machines and to understand how they work, we need to understand how they move. New pump-probe time-resolved X-ray diffraction methods open up ways to initiate and observe protein motions with atomistic detail in crystals on biologically relevant timescales. However, practical limitations of these experiments demands parallel development of effective molecular dynamics approaches to accelerate progress and extract meaning. Here, we establish robust and accurate methods for simulating dynamics in protein crystals, a nontrivial process requiring careful attention to equilibration, environmental composition, and choice of force fields. With more than seven milliseconds of sampling of a single chain, we identify critical factors controlling agreement between simulation and experiments and show that simulated motions recapitulate ligand-induced conformational changes. This work enables a virtuous cycle between simulation and experiments for visualizing and understanding the basic functional motions of proteins.

4.
Nat Commun ; 14(1): 4885, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573411

RESUMEN

Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.


Asunto(s)
Núcleo Celular , Células Madre Embrionarias , Animales , Ratones , Núcleo Celular/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Heterocromatina/metabolismo , Homólogo de la Proteína Chromobox 5
5.
Biophys J ; 122(14): 2871-2883, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36116009

RESUMEN

Accurate modeling of protein-water interactions in molecular dynamics (MD) simulations is important for understanding the molecular basis of protein function. Data from x-ray crystallography can be useful in assessing the accuracy of MD simulations, in particular, the locations of crystallographic water sites (CWS) coordinated by the protein. Such a comparison requires special methodological considerations that take into account the dynamic nature of proteins. However, existing methods for analyzing CWS in MD simulations rely on global alignment of the protein onto the crystal structure, which introduces substantial errors in the case of significant structural deviations. Here, we propose a method called local alignment for water sites (LAWS), which is based on multilateration-an algorithm widely used in GPS tracking. LAWS considers the contacts formed by CWS and protein atoms in the crystal structure and uses these interaction distances to track CWS in a simulation. We apply our method to simulations of a protein crystal and to simulations of the same protein in solution. Compared with existing methods, LAWS defines CWS characterized by more prominent water density peaks and a less-perturbed protein environment. In the crystal, we find that all high-confidence crystallographic waters are preserved. Using LAWS, we demonstrate the importance of crystal packing for the stability of CWS in the unit cell. Simulations of the protein in solution and in the crystal share a common set of preserved CWS that are located in pockets and coordinated by residues of the same domain, which suggests that the LAWS algorithm will also be useful in studying ordered waters and water networks in general.


Asunto(s)
Proteínas , Agua , Agua/química , Proteínas/química , Simulación de Dinámica Molecular , Cristalografía por Rayos X
6.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183751

RESUMEN

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Asunto(s)
Fructanos , Enfermedades Inflamatorias del Intestino , Adulto , Humanos , Leucocitos Mononucleares , Intestinos , Fibras de la Dieta , Inflamación
7.
Biochemistry ; 61(14): 1444-1455, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35759789

RESUMEN

Cyanobacteriochromes (CBCRs) are photoreceptors consisting of single or tandem GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domains that bind bilin chromophores. Canonical red/green CBCR GAF domains are a well-characterized subgroup of the expanded red/green CBCR GAF domain family that binds phycocyanobilin (PCB) and converts between a thermally stable red-absorbing Pr state and a green-absorbing Pg state. The rate of thermal reversion from Pg to Pr varies widely among canonical red/green CBCR GAF domains, with half-lives ranging from days to seconds. Since the thermal reversion rate is an important parameter for the application of CBCR GAF domains as optogenetic tools, the molecular factors controlling the thermal reversion rate are of particular interest. Here, we report that point mutations in a well-conserved W(S/G)GE motif alter reversion rates in canonical red/green CBCR GAF domains in a predictable manner. Specifically, S-to-G mutations enhance thermal reversion rates, while the reverse, G-to-S mutations slow thermal reversion. Despite the distance (>10 Å) of the mutation site from the chromophore, molecular dynamics simulations and nuclear magnetic resonance (NMR) analyses suggest that the presence of a glycine residue allows the formation of a water bridge that alters the conformational dynamics of chromophore-interacting residues, leading to enhanced Pg to Pr thermal reversion.


Asunto(s)
Fotorreceptores Microbianos , Fitocromo , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/química , Pigmentos Biliares , Luz , Conformación Molecular , Mutación , Fotorreceptores Microbianos/química , Fitocromo/química
8.
Biophys J ; 118(12): 2952-2965, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32502383

RESUMEN

Intrinsically disordered proteins are proteins whose native functional states represent ensembles of highly diverse conformations. Such ensembles are a challenge for quantitative structure comparisons because their conformational diversity precludes optimal superimposition of the atomic coordinates necessary for deriving common similarity measures such as the root mean-square deviation of these coordinates. Here, we introduce superimposition-free metrics that are based on computing matrices of the Cα-Cα distance distributions within ensembles and comparing these matrices between ensembles. Differences between two matrices yield information on the similarity between specific regions of the polypeptide, whereas the global structural similarity is captured by the root mean-square difference between the medians of the Cα-Cα distance distributions of two ensembles. Together, our metrics enable rigorous investigations of structure-function relationships in conformational ensembles of intrinsically disordered proteins derived using experimental restraints or by molecular simulations and for proteins containing both structured and disordered regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Benchmarking , Péptidos , Conformación Proteica
9.
Methods Mol Biol ; 2039: 243-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342431

RESUMEN

Aberrant aggregation of proteins into poorly soluble, toxic structures that accumulate intracellularly or extracellularly leads to a range of disease states including Alzheimer's, Parkinson's, Huntington's, prion diseases, and type II diabetes. Many of the disease-associated amyloidogenic proteins are intrinsically disordered, which makes their experimental investigation challenging due to a limited number of experimental observables to effectively characterize their ensemble of conformations. Molecular dynamics simulations provide dynamic information with atomistic detail, and are increasingly employed to study aggregation processes, offering valuable structural and mechanistic insights. In this chapter, we demonstrate the use of all-atom molecular dynamics simulations to model the self-aggregation of a six-residue amyloidogenic peptide derived from amyloid ß, a 39-43 residue-long peptide associated with the pathogenesis of Alzheimer's disease. We provide detailed instructions on how to obtain the initial monomer conformations and build the multichain systems, how to carry out the simulations, and how to analyze the simulation trajectories to investigate the peptide self-aggregation process.


Asunto(s)
Proteínas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Simulación de Dinámica Molecular , Agregado de Proteínas/fisiología , Conformación Proteica , Solubilidad
10.
Nat Commun ; 10(1): 2517, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175292

RESUMEN

Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5BN642H, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5BN642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5BN642H-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5BN642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5BN642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5BN642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5BN642H, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5BN642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.


Asunto(s)
Linfocitos Intraepiteliales , Leucemia de Células T/genética , Linfoma de Células T/genética , Mutación , Factor de Transcripción STAT5/genética , Animales , Neoplasias Hematológicas/genética , Humanos , Ratones , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Dominios Homologos src
11.
J Mol Biol ; 430(21): 4102-4118, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30120952

RESUMEN

Photoreceptors of the squid Loligo pealei contain a G-protein-coupled receptor (GPCR) signaling system that activates phospholipase C in response to light. Analogous to the mammalian visual system, signaling of the photoactivated GPCR rhodopsin is terminated by binding of squid arrestin (sArr). sArr forms a light-dependent, high-affinity complex with squid rhodopsin, which does not require prior receptor phosphorylation for interaction. This is at odds with classical mammalian GPCR desensitization where an agonist-bound phosphorylated receptor is needed to break stabilizing constraints within arrestins, the so-called "three-element interaction" and "polar core" network, before a stable receptor-arrestin complex can be established. Biophysical and mass spectrometric analysis of the squid rhodopsin-arrestin complex indicates that in contrast to mammalian arrestins, the sArr C-tail is not involved in a stable three-element interaction. We determined the crystal structure of C-terminally truncated sArr that adopts a basal conformation common to arrestins and is stabilized by a series of weak but novel polar core interactions. Unlike mammalian arrestin-1, deletion of the sArr C-tail does not influence kinetic properties of complex formation of sArr with the receptor. Hydrogen-deuterium exchange studies revealed the footprint of the light-activated rhodopsin on sArr. Furthermore, double electron-electron resonance spectroscopy experiments provide evidence that receptor-bound sArr adopts a conformation different from the one known for arrestin-1 and molecular dynamics simulations reveal the residues that account for the weak three-element interaction. Insights gleaned from studying this system add to our general understanding of GPCR-arrestin interaction.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Decapodiformes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Rodopsina/química , Rodopsina/metabolismo , Animales , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
12.
Elife ; 62017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29120326

RESUMEN

The protein elastin imparts extensibility, elastic recoil, and resilience to tissues including arterial walls, skin, lung alveoli, and the uterus. Elastin and elastin-like peptides are hydrophobic, disordered, and undergo liquid-liquid phase separation upon self-assembly. Despite extensive study, the structure of elastin remains controversial. We use molecular dynamics simulations on a massive scale to elucidate the structural ensemble of aggregated elastin-like peptides. Consistent with the entropic nature of elastic recoil, the aggregated state is stabilized by the hydrophobic effect. However, self-assembly does not entail formation of a hydrophobic core. The polypeptide backbone forms transient, sparse hydrogen-bonded turns and remains significantly hydrated even as self-assembly triples the extent of non-polar side chain contacts. Individual chains in the assembly approach a maximally-disordered, melt-like state which may be called the liquid state of proteins. These findings resolve long-standing controversies regarding elastin structure and function and afford insight into the phase separation of disordered proteins.


Asunto(s)
Elastina/química , Elastina/metabolismo , Multimerización de Proteína , Simulación de Dinámica Molecular , Conformación Proteica
13.
Nat Methods ; 14(1): 71-73, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27819658

RESUMEN

The all-atom additive CHARMM36 protein force field is widely used in molecular modeling and simulations. We present its refinement, CHARMM36m (http://mackerell.umaryland.edu/charmm_ff.shtml), with improved accuracy in generating polypeptide backbone conformational ensembles for intrinsically disordered peptides and proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Pliegue de Proteína , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica
14.
J Chem Theory Comput ; 11(11): 5513-24, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26574339

RESUMEN

Intrinsically disordered proteins (IDPs) are notoriously challenging to study both experimentally and computationally. The structure of IDPs cannot be described by a single conformation but must instead be described as an ensemble of interconverting conformations. Atomistic simulations are increasingly used to obtain such IDP conformational ensembles. Here, we have compared the IDP ensembles generated by eight all-atom empirical force fields against primary small-angle X-ray scattering (SAXS) and NMR data. Ensembles obtained with different force fields exhibit marked differences in chain dimensions, hydrogen bonding, and secondary structure content. These differences are unexpectedly large: changing the force field is found to have a stronger effect on secondary structure content than changing the entire peptide sequence. The CHARMM 22* ensemble performs best in this force field comparison: it has the lowest error in chemical shifts and J-couplings and agrees well with the SAXS data. A high population of left-handed α-helix is present in the CHARMM 36 ensemble, which is inconsistent with measured scalar couplings. To eliminate inadequate sampling as a reason for differences between force fields, extensive simulations were carried out (0.964 ms in total); the remaining small sampling uncertainty is shown to be much smaller than the observed differences. Our findings highlight how IDPs, with their rugged energy landscapes, are highly sensitive test systems that are capable of revealing force field deficiencies and, therefore, contributing to force field development.


Asunto(s)
Simulación por Computador , Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dispersión del Ángulo Pequeño
15.
Biochemistry ; 53(40): 6402-8, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25227946

RESUMEN

The ß-casein phosphopeptide 1-25 (ßCPP) is involved in calcium binding, cellular transduction, and dental remineralization. Though the net charge of 13e suggests an intrinsically disordered peptide, it has been shown to possibly maintain partial structure. To investigate the nature and extent of its conformational disorder, 100 independent molecular dynamics simulations (cumulative time of 30 µs) were conducted in explicit water with 0.1 M sodium chloride. ßCPP adopted an ensemble of conformations (Rg = 8.61 ± 0.06 Å) stabilized primarily by ionic interactions and less so by hydrogen bonding (HB). Intramolecular contact maps showed a lack of interaction between the peptide's head (RELEELNVPGEIVEΣ) and tail (ΣΣΣEESITR) segments, suggesting their conformational independence. While many backbone HB interactions were observed between the amino acids in each segment, there was no persistent secondary structure evident. Our findings provide a framework for further investigation of ßCPP's conformation and mechanism of action upon binding to calcium phosphate.


Asunto(s)
Caseínas/química , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química , Datos de Secuencia Molecular , Fosfopéptidos/química , Estructura Secundaria de Proteína
16.
J Chem Theory Comput ; 9(8): 3686-703, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26584121

RESUMEN

All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the amount of sampling that is required to resolve these sampling errors. Finally, we extend our simulations and verify that the conformational autocorrelation times estimated by the transmission factor accurately predict correlation times that exceed the simulation time scale-something that, to our knowledge, has never before been achieved.

17.
J Chem Theory Comput ; 8(5): 1774-1785, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22582033

RESUMEN

We present an extension of the coarse-grained MARTINI model for proteins and apply this extension to amyloid- and elastin-like peptides. Atomistic simulations of tetrapeptides, octapeptides, and longer peptides in solution are used as a reference to parametrize a set of pseudodihedral potentials that describe the internal flexibility of MARTINI peptides. We assess the performance of the resulting model in reproducing various structural properties computed from atomistic trajectories of peptides in water. The addition of new dihedral angle potentials improves agreement with the contact maps computed from atomistic simulations significantly. We also address the question of which parameters derived from atomistic trajectories are transferable between different lengths of peptides. The modified coarse-grained model shows reasonable transferability of parameters for the amyloid- and elastin-like peptides. In addition, the improved coarse-grained model is also applied to investigate the self-assembly of ß-sheet forming peptides on the microsecond time scale. The octapeptides SNNFGAIL and (GV)(4) are used to examine peptide aggregation in different environments, in water, and at the water-octane interface. At the interface, peptide adsorption occurs rapidly, and peptides spontaneously aggregate in favor of stretched conformers resembling ß-strands.

18.
Adv Exp Med Biol ; 725: 159-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22399324

RESUMEN

An emerging class of disordered proteins underlies the elasticity of many biological tissues. Elastomeric proteins are essential to the function of biological machinery as diverse as the human arterial wall, the capture spiral of spider webs and the jumping mechanism of fleas. In this chapter, we review what is known about the molecular basis and the functional role of structural disorder in protein elasticity. In general, the elastic recoil of proteins is due to a combination of internal energy and entropy. In rubber-like elastomeric proteins, the dominant driving force is the increased entropy of the relaxed state relative to the stretched state. Aggregates of these proteins are intrinsically disordered or fuzzy, with high polypeptide chain entropy. We focus our discussion on the sequence, structure and function of five rubber-like elastomeric proteins, elastin, resilin, spider silk, abductin and ColP. Although we group these disordered elastomers together into one class of proteins, they exhibit a broad range of sequence motifs, mechanical properties and biological functions. Understanding how sequence modulates both disorder and elasticity will help advance the rational design of elastic biomaterials such as artificial skin and vascular grafts.


Asunto(s)
Elasticidad , Estructura Terciaria de Proteína , Proteínas/química , Animales , Humanos
19.
J Phys Chem B ; 116(3): 1111-9, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22091989

RESUMEN

The self-aggregation of proteins into amyloid fibrils is a pathological hallmark of numerous incurable diseases such as Alzheimer's disease. scyllo-Inositol is a stereochemistry-dependent in vitro inhibitor of amyloid formation. As the first step to elucidate its mechanism of action, we present molecular dynamics simulations of scyllo-inositol and its inactive stereoisomer, chiro-inositol, with simple peptide models, alanine dipeptide (ADP) and (Gly-Ala)(4). We characterize molecular interactions and compute equilibrium binding constants between inositol and ADP as well as, successively, monomers, amorphous aggregates, and fibril-like ß-sheet aggregates of (Gly-Ala)(4). Inositol interacts weakly with all peptide systems considered, with millimolar to molar affinities, and displaces the conformational equilibria of ADP but not of the (Gly-Ala)(4) systems. However, scyllo- and chiro-inositol adopt different binding modes on the surface of ß-sheet aggregates. These results suggest that inositol does not inhibit amyloid formation by breaking up preformed aggregates but rather by binding to the surface of prefibrillar aggregates.


Asunto(s)
Amiloide/metabolismo , Inositol/química , Inositol/metabolismo , Péptidos/química , Péptidos/metabolismo , Estereoisomerismo , Amiloide/química , Humanos , Modelos Moleculares , Conformación Proteica
20.
Proteins ; 79(1): 1-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20938982

RESUMEN

The capacity to form ß-sheet structure and to self-organize into amyloid aggregates is a property shared by many proteins. Severe neurodegenerative pathologies such as Alzheimer's disease are thought to involve the interaction of amyloidogenic protein oligomers with neuronal membranes. To understand the experimentally observed catalysis of amyloid formation by lipid membranes and other water-hydrophobic interfaces, we examine the physico-chemical basis of peptide adsorption and aggregation in a model membrane using atomistic molecular simulations. Blocked octapeptides with simple, repetitive sequences, (Gly-Ala)4, and (Gly-Val)4, are used as models of ß-sheet-forming polypeptide chains found in the core of amyloid fibrils. In the presence of an n-octane phase mimicking the core of lipid membranes, the peptides spontaneously partition at the octane-water interface. The adsorption of nonpolar sidechains displaces the peptides' conformational equilibrium from a heterogeneous ensemble characterized by a high degree of structural disorder toward a more ordered ensemble favoring ß-hairpins and elongated ß-strands. At the interface, peptides spontaneously aggregate and rapidly evolve ß-sheet structure on a 10 to 100 ns time scale, while aqueous aggregates remain amorphous. Catalysis of ß-sheet formation results from the combination of the hydrophobic effect and of reduced conformational entropy of the polypeptide chain. While the former drives interfacial partition and displaces the conformational equilibrium of monomeric peptides, the planar interface further facilitates ß-sheet organization by increasing peptide concentration and reducing the dimensionality of self-assembly from three to two. These findings suggest a general mechanism for the formation of ß-sheets on the surface of globular proteins and for amyloid self-organization at hydrophobic interfaces.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Adsorción , Amiloide/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Octanos/química , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...